Defect detection of Aluminum Conductor Composite Core (ACCC) wires based on semi-supervised anomaly detection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Toward Supervised Anomaly Detection

Anomaly detection is being regarded as an unsupervised learning task as anomalies stem from adversarial or unlikely events with unknown distributions. However, the predictive performance of purely unsupervised anomaly detection often fails to match the required detection rates in many tasks and there exists a need for labeled data to guide the model generation. Our first contribution shows that...

متن کامل

Fixed-Background EM Algorithm for Semi-Supervised Anomaly Detection

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Tommi Vatanen, Mikael Kuusela, Eric Malmi, Tapani Raiko, Timo Aaltonen and Yoshikazu Nagai Name of the publication Fixed-Background EM Algorithm for Semi-Supervised Anomaly Detection Publisher School of Science Unit Department of Information and Computer Science Series Aalto University publication series SCIENCE + TECHNOLOGY 2...

متن کامل

Unsupervised and Semi-supervised Anomaly Detection with LSTM Neural Networks

We investigate anomaly detection in an unsupervised framework and introduce Long Short Term Memory (LSTM) neural network based algorithms. In particular, given variable length data sequences, we first pass these sequences through our LSTM based structure and obtain fixed length sequences. We then find a decision function for our anomaly detectors based on the One Class Support Vector Machines (...

متن کامل

Semi-supervised Statistical Approach for Network Anomaly Detection

Intrusion Detection Systems (IDS) have become a very important defense measure against security threats. In recent years, computer networks are widely deployed for critical and complex systems, which make them more vulnerable to network attacks. In this paper, we propose a two-stage Semi-supervised Statistical approach for Anomaly Detection (SSAD). The first stage of SSAD aims to build a probab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energy Reports

سال: 2021

ISSN: 2352-4847

DOI: 10.1016/j.egyr.2021.01.095